Abstract

In this paper, we develop a teleoperation framework to perform master-slave control of an active catheter instrumented with Shape Memory Alloy (SMA) actuators. The catheter is also instrumented with a 5-DOF magnetic sensor which provides feedback on the position of the distal end of the catheter while strain gauges on the catheter tip reflect the forces. SMAs demonstrate a hysteretic, non-linear and time-delayed behavior; therefore maintaining stability of the teleoperation algorithm is a prime requirement. The wave variables based approach provides a robust method to perform bilateral teleoperation of the active catheter. The clinician controls the position of the tip of the catheter from a remote location while precisely feeling the forces acting on the catheter tip. This enables the clinician to perform fine manipulations within the blood vessels, close to bifurcations and to the site of plaque buildup. In addition, a force control algorithm has been developed and implemented on the active catheter for enabling smooth guidance of the catheter into the vasculature and for application in cardiac ablation. Experimental results are presented for the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.