Abstract

AbstractMain notions and ideas of wave (weak) turbulence theory are explained with the help of Hamiltonian approach to wave dynamics, and are applied to waves in RSW model. Derivation of kinetic equations under random-phase approximation is explained. Short inertia–gravity waves on the f plane, short equatorial inertia–gravity waves, and Rossby waves on the beta plane are then considered along these lines. In all of these cases, approximate solutions of kinetic equation, annihilating the collision integral, can be obtained by scaling arguments, giving power-law energy spectra. The predictions of turbulence of inertia–gravity waves on the f plane are compared with numerical simulations initialised by ensembles of random waves. Energy spectra much steeper than theoretical are observed. Finite-size effects, which prevent energy transfer from large to short scales, provide a plausible explanation. Long waves thus evolve towards breaking and shock formation, yet the number of shocks is insufficient to produce shock turbulence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.