Abstract

We study transport and diffusion of classical waves in two-dimensional disordered systems and in particular surface waves on a flat surface with randomly fluctuating impedance. We derive from first principles a radiative transport equation for the angularly resolved energy density of the surface waves. This equation accounts for multiple scattering of surface waves as well as for their decay because of leakage into volume waves. We analyze the dependence of the scattering mean free path and of the decay rate on the power spectrum of fluctuations. We also consider the diffusion approximation of the surface radiative transport equation and calculate the angular distribution of the energy transmitted by a strip of random surface impedance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.