Abstract
Structural lattices with quasi-periodic patterns possess interesting dynamic features that can be exploited to control, localize and redirect propagating waves. In this work, we show that the properties of a large class of quasi-periodic locally resonant systems (approximated as periodic, with arbitrarily large period) can be performed by defining an equivalent discrete system. Several properties of wave propagation can a priori be demonstrated with reference to this system. Results in terms of bulk spectrum, showing the Hofstadter butterfly pattern, and of topological modes are then discussed in detail with reference to a simple example of quasi-periodic lattice. This article is part of the theme issue 'Current developments in elastic and acoustic metamaterials science (Part 2)'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.