Abstract

In the present study, the combination of vertical porous barrier along with the porous block is proposed for wave energy damping. Three types of vertical barriers such as (a) fully extended barrier (b) bottom-standing barrier and (c) surface piercing barrier away from the porous structure are analysed for wave trapping. The finite spacing in between vertical barrier and the porous structure is proposed for better wave trapping. The continuity of velocity and pressure at the interfaces of vertical barrier and porous structure are considered and the eigenfunction expansion method is adopted to determine the wave transformation characteristics due to the presence of submerged vertical barrier and porous block. The resistance and reactance offered by the porous structure are taken into account using the complex dispersion relation proposed by Sollitt and Cross (1972). The effect of structural porosity, width of the structure and angle of incidence on wave transformation due to the vertical barrier away from the porous structure are examined in detail. The results are compared and validated with the available literature for specific configurations as in Sollitt and Cross (1972) and Mallayachari and Sundar (1994). The study suggests that the increase in the structural porosity enhances the wave energy damping and global minima is achieved in the wave reflection coefficient due to the formation of standing waves by the breakwater system. The proposed structure can be adopted in leeward, port and harbour regions to achieve the tranquillity condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call