Abstract
We study invasion fronts in the FitzHugh–Nagumo equation in the oscillatory regime using singular perturbation techniques. Phenomenologically, localized perturbations of the unstable steady-state grow and spread, creating temporal oscillations whose phase is modulated spatially. The phase modulation appears to be selected by an invasion front that describes the behavior in the leading edge of the spreading process. We construct these invasion fronts for large regions of parameter space using singular perturbation techniques. Key ingredients are the construction of periodic orbits, their unstable manifolds, and the analysis of pushed and pulled fronts in the fast system. Our results predict the wavenumbers and frequencies of oscillations in the wake of the front through a phase locking mechanism. We also identify a parameter regime where nonlinear phase locked fronts are inaccessible in the singularly perturbed geometry of the traveling-wave equation. Direct simulations confirm our predictions and point to interesting phase slip dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.