Abstract
Driven granular media constitute model systems in out-of-equilibrium statistical physics. By assimilating the motions of granular particles to those of atoms, by analogy, one can obtain macroscopic equivalent of phase transitions. Here, we study fluid-like and crystal-like two-dimensional states in a driven granular material. In our experimental device, a tunable magnetic field induces and controls remote interactions between the granular particles. We use high-speed video recordings to analyse the velocity fluctuations of individual particles in stationary regime. Using statistical averaging, we find that the particles self-organize into collective excitations characterized by dispersion relations in the frequency-wavenumber space. These findings thus reveal that mechanical waves analogous to condensed matter phonons propagate in driven granular media. When the magnetic coupling is weak, the waves are longitudinal, as expected for a fluid-like phase. When the coupling is stronger, both longitudinal and transverse waves propagate, which is typically seen in solid-like phases. We model the dispersion relations using the spatial distribution of particles and their interaction potential. Finally, we infer the elastic parameters of the granular assembly from equivalent sound velocities, thus realizing the spectroscopy of a granular material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.