Abstract

In waveguide structures, waves may be partially reflected by local non-uniformities such as cracks and other defects. The reflection and transmission characteristics associated with the presence of a discontinuity may be used, in principle, to give some indication of both the location and size of the defect. A combined spectral element and finite element (SE/FE) method has been used previously to investigate the effects of local non-uniformities at relatively low frequencies. However, for analysis at higher frequencies, where complex deformation of the waveguide occurs, it is necessary to extend this approach. Such high frequency analysis is necessary if small defects are to be located within the waveguide cross-section. In order to investigate wave propagation at higher frequencies, a combined spectral super element and finite element (SSE/FE) method is presented. This method allows the transmission, reflection and wave conversion at discontinuities to be determined for complex waveguides. As an example of the use of this method, wave reflection and transmission in rails are estimated at frequencies between 20 and 40 kHz for various notional sawcut-like defects of progressively increasing size. This shows the feasibility of the approach for realistic waveguides. However, from these simulations it is shown that defects have to be quite large before they can be detected using a single transducer position on the rail cross-section using train-induced vibration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call