Abstract

Nonlinear lattices and the nonlinear acoustics they support have a broad impact on shock and vibration mitigation, sound isolation, and acoustic logic devices. In this work, we experimentally study wave redirection, localization, and non-reciprocity in an asymmetric network of two nonlinear lattices with weak linear inter-lattice coupling. We report on the design, fabrication, and system identification of coupled lattices with essentially nonlinear next-neighbor intra-lattice coupling and on their unusual nonlinear acoustics. By weakly coupling the lattices and introducing structural disorder in one of them, we experimentally prove the realization of irreversible breather redirection between lattices governed by a macroscopic analog of the quantum Landau–Zener tunneling effect. In the experiments performed, the input energy is applied by impulse (broadband) excitation, and the resulting acoustical mechanism for wave redirection is in the form of propagating breathers, that is, localized oscillating wave packets formed by the synergy of nonlinearity and dispersion. Moreover, we study the non-reciprocal acoustics of the experimental lattice system by applying separate impulses at each of its four terminals and investigate the tunability with the energy of the resulting acoustic non-reciprocity by systematically varying the impulse intensity. The reported experimental results show that the weakly coupled, disordered, and nonlinear lattice system has wave tailoring properties that are tunable with energy. Altogether, the experimental results agree well with theoretical predictions reported in a companion work based on reduced-order numerical models and prove the efficacy of the system for applications, providing a path for applying these advanced concepts in future structures and devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.