Abstract
Wave radiation and diffraction by a circular cylinder submerged below an ice sheet with a crack are considered based on the linearized velocity potential theory together with multipole expansion. The solution starts from the potential due to a single source, or the Green function satisfying both the ice sheet condition and the crack condition, as well as all other conditions apart from that on the body surface. This is obtained in an integral form through Fourier transform, in contrast to what has been obtained previously in which the Green function is in the series form based on the method of matched eigenfunction expansion in each domain on both sides of the crack. The multipole expansion is then constructed through direct differentiation of the Green function with respect to the source position, rather than treating each multipole as a separate problem. The use of the Green function enables the problem of wave diffraction by the crack in the absence of the body to be solved directly. For the circular cylinder, wave radiation and diffraction problems are solved by applying the body surface boundary condition to the multipole expansion, through which the unknown coefficients are obtained. Extensive results are provided for the added mass and damping coefficient as well as the exciting force. When the cylinder is away from the crack, a wide spacing approximation method is used, which is found to provide accurate results apart from when the cylinder is quite close to the crack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.