Abstract

The application of the bidirectional Wave Finite Element Method (WFE) to Biot–Allard׳s theory of poroelasticity is investigated. This method has been successfully used in previous elastodynamics studies. In the case of porous media, the rigidity of the layer is very low, leading to very small wavelengths, and a high dissipation rate occurs within the pores. These differences with the elastic case justify a study of their consequences on numerical results. In this paper, it is shown that despite these difficulties, the WFE provides an efficient tool to compute the waves propagating through poroelastic media. The influence of boundary conditions on wave propagation is discussed, as well as the convergence of the numerical results, depending on the spatial discretization, the order of shape functions, and the choice of the formulation. Finally, the wavenumbers predicted with this method are compared with some simplified models such as equivalent fluid models or equivalent plate models. It is shown that the WFE can be used to validate the assumptions made by the simplified models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.