Abstract
The propagation and scattering of waves on the Timoshenko beam are investigated by using the method of wave propagators. This method is more general than the scattering operators connected to the imbedding and Green function approaches; the wave propagators map the incoming field at an internal position onto the scattering fields at any other internal position of the scattering region. This formalism contains the imbedding method and Green function approach as special cases. Equations for the propagator kernels are derived, as are the conditions for their discontinuities. Symmetry requirements on certain coupling matrices originating from the wave splitting are considered. They are illustrated by two specific examples. The first being an unrestrained beam with a varying cross-section and the other a homogeneous, viscoelastically restrained beam. A numerical algorithm for solving the equations for the propagator kernels is described. The algorithm is tested for the case of a viscoelastically restrained, homogeneous beam. In a limit these results agree with the ones obtained for the reflection kernel by a previously developed algorithm for the imbedding reflection equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.