Abstract

Nonlinear wave propagation through a 2D lattice is investigated. Using reductive perturbation method, we show that this can be described by Kadomtsev–Petviashvili (KP) equation for quadratic nonlinearity and modified KP equation for cubic nonlinearity, respectively. With quadratic and cubic nonlinearities together, the system is governed by an integro-differential equation. We have also checked the integrability of these equations using singularity analysis and obtained solitary wave solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.