Abstract

This research presents the agglomeration effect of reinforcements on wave propagation analysis of multi-scale hybrid nanocomposite shell based on first-order shear deformable theory (FSDT) of shell for the first time. The nanocomposite shell is consist of carbon fiber (CF) as macro reinforcement, carbon nanotubes (CNTs) as nanoreinforcement and epoxy as an initial matrix. Eshelby-Mori-Tanaka method and rule of mixture are implemented in order to predict the equivalent mechanical properties of nanocomposite shell. To derive the motion equation of shell, FSDT is applied and governing equations are attained by employing Hamilton's principle. Dispersion solution is calculated by solving eigenvalue problem and also analytical method is utilized to solve the governing equations and finally wave frequency and phase velocity of nanocomposite shell can be achieved. In detail, several illustrations are presented which influence various parameters such as longitudinal and circumferential wave number, the volume fraction of CF, volume fraction of CNTs inside the cluster and so on are investigated.Communicated by Chandrika Prakash Vyasarayani.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call