Abstract

This paper focuses on small-size planar beam lattices, where size effects are modelled by the stress-driven nonlocal elasticity theory in conjunction with the Rayleigh beam theory. The purpose is to propose two novel computational approaches for elastic wave propagation analysis. In a first dynamic-stiffness approach, every lattice member is modelled by a unique two-node beam element, the exact dynamic-stiffness matrix of which is built solving, in concise analytical form, the stress-driven differential equations of motion. In a second finite-element approach, every lattice member is discretized by an increasingly refined mesh of two-node beam elements; in this case, the stiffness and mass matrices of the lattice member are obtained from shape functions built based on the exact solutions of the stress-driven differential equations for static equilibrium. Advantages of the two approaches are compared and discussed. Dispersion curves are calculated for a typical planar lattice, highlighting the role of nonlocality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.