Abstract

Mathematical modeling and properties of a linear longitudinal wave propagating in a slender bar with random imperfections of material density and Young modulus of elasticity is discussed. Fluctuation components of material properties are considered as continuous stochastic functions of the length coordinate. Two types of fluctuation and their influence on response properties have been investigated, in particular the delta correlated and a diffusion-type processes. Investigation itself is based on Markov processes and corresponding Fokker–Planck–Kolmogorov equation. The stochastic moments closure as a solution method has been used. Many effects due to the stochastic nature of the problem have been detected. Along the bar a drop of the mean value of the response with the simultaneous increase of the response variance have been observed. This effect does not represent any conventional damping, but a gradual drop of the deterministic and an increase of the stochastic components of the overall response. The rate of the response indeterminacy increases with the increase of the length coordinate. Increasing values of material imperfection variances and the rising excitation frequency can lead to a critical state when the length of the propagating wave is comparable with the correlation length of imperfections. This state will manifest itself as a radical change of the response character. The problem will pass beyond the boundaries of stochastic mechanics and lose its physical meaning. Similar effects can be observed in the FEM analysis, where there is also a certain permissible upper boundary of the excitation frequency corresponding with the size and type of the element used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.