Abstract
A dynamic solution is presented for the propagation of harmonic waves in imhomogeneous (functionally graded) magneto-electro-elastic hollow cylinders composed of piezoelectric BaTiO 3 and magnetostrictive CoFe 2O 4. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The Legendre orthogonal polynomial series expansion approach is employed to determine the wave propagating characteristics in the hollow cylinders. The dispersion curves of the imhomogeneous piezoelectric–piezomagnetic hollow cylinder and the corresponding non-piezoelectric and non-piezomagnetic hollow cylinders are calculated to show the influence of the piezoelectricity and piezomagnetism. Electric potential and magnetic potential distributions are obtained to illustrate the different influences of the piezoelectricity and piezomagnetism and the different influences of the piezoelectric effect and piezomagnetic effect on longitudinal modes and torsional modes. For the radial polarizing piezoelectric–piezomagnetic hollow cylinder, the piezoelectric effect and piezomagnetic effect take mostly on the longitudinal mode. Finally, a hollow cylinder at different ratio of radius to thickness is calculated to show the influence of the ratio on the piezoelectric effect and piezomagnetic effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.