Abstract

A linear theory of generalized thermo-microstretch elastic solid containing voids is formulated. Lord and Shulman [2] theory of thermoelasticity is employed to incorporate thermal effects. Free energy density function is constructed to develop the constitutive relations and field equations for an isotropic homogeneous generalized thermo-microstretch elastic solid containing voids. The possibility of propagation of plane waves is investigated in the medium of infinite extent. It is found that there may exist four sets of coupled longitudinal waves, two sets of coupled transverse waves and an independent longitudinal microrotational wave traveling with distinct speeds. Each set of coupled longitudinal waves is found to be attenuating and dispersive in nature, while an independent longitudinal microrotational wave and the remaining two sets of coupled transverse waves are found to be dispersive but non-attenuating in nature. All the possible waves are influenced by the polar property of the medium; however, all the coupled longitudinal waves are influenced by the stretch, voids and thermal properties of the medium. It is also found that all coupled longitudinal waves exist for all non-negative frequencies, while the independent longitudinal microrotational wave and one of the sets of coupled transverse waves exist only after certain cutoff frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call