Abstract

We use the modified smoothed particle hydrodynamics (MSPH) method to study the propagation of elastic waves in functionally graded materials. An artificial viscosity is added to the hydrostatic pressure to control oscillations in the shock wave. Computed results agree well with the analytical solution of the problem. It is shown that, for the same placement of particles/nodes the MSPH method gives better results than the finite element method when the initial smoothing length in the MSPH method is 1.1 times the distance between two adjacent particles. Effects of the artificial viscosity are also examined, and the optimum value of the linear artificial viscosity that minimizes the relative error in computed stresses is found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.