Abstract

In this paper, wave propagation in fluid-conveying double-walled carbon nanotube (DWCNT) was investigated by using the nonlocal strain gradient theory. In so doing, the shear deformable shell theory was used, taking into consideration nonlocal and material length scale parameters. The effect of van der Waals force between the two intended walls and the DWCNT surroundings was modeled as Winkler foundation. The classical governing equations were derived from Hamilton’s principle. Results were validated by comparing them to the results of the references obtained through molecular dynamic method, and a remarkable consistency was found between the results. According to the findings, the effects of nonlocal and material length scale parameters, wave number, fluid velocity and stiffness of elastic foundation are more considerable in the nonlocal strain gradient theory than in classical theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.