Abstract
Wave propagation in carbon nanotubes (CNTs) is studied with two nonlocal continuum mechanics models: elastic Euler-Bernoulli and Timoshenko beam models [Philos. Mag. 41, 744 (1921)]. The small-scale effect on CNTs wave propagation dispersion relation is explicitly revealed for different CNTs wave numbers and diameters by theoretical analyses and numerical simulations. The asymptotic phase velocities and frequency are also derived from nonlocal continuum mechanics. The scale coefficient in nonlocal continuum mechanics is roughly estimated for CNTs from the obtained asymptotic frequency. In addition, the applicability and comparison of the two nonlocal elastic beam models to CNTs wave propagation are explored through numerical simulations. The research findings are proved effective in predicting small-scale effect on CNTs wave propagation with a qualitative validation study based on the published experimental reports in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.