Abstract

The polarization direction of an electromagnetic field changes and eventually reaches a steady state when propagating through a birefringent material with off axis absorption or gain. The steady state orientation direction depends on the magnitude of the absorption (gain) and the phase retardation rate. The change in the polarization direction is experimentally demonstrated in weakly doped ($0.05\%$) Pr$^{3+}$:Y$_2$SiO$_5$ crystals, where the light polarization, if initially aligned along the most strongly absorbing principal axis, gradually switch to a much less absorbing polarization state during the propagation. This means that the absorption coefficient, $\alpha$, in birefringent materials generally varies with length. This is important for, e.g., laser crystal gain media, highly absorbing and narrow band spectral filters and quantum memories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.