Abstract
Cross-shape piezoelectric patches were originally proposed to improve the band-gap properties of acoustic metamaterials with shunting circuits. The dispersion curves are characterized through the application of finite element method. Also, the theoretical band-gap predictions are verified by simulation results obtained from COMSOL. The investigation results show that the proposed scheme distinguishes itself from the conventional square patches by broader band gaps, whose bandwidth is almost doubled. The inherent capacitance of the piezoelectric patch is strongly related to the boundary conditions, so the local resonant band gap is strongly affected by the shape of piezoelectric patches as well. As a result, the band-gap width and location of metamaterials with different shape patches are rather different, even with the same size patches. Also, negative modulus (NM) and Poisson’s ratio were observed around the resonant frequencies. The transmission properties of finite periods agree well with band-gap predictions. An obvious attenuation zone (AZ) is produced around the band-gap location, in which the wave propagation is decayed strongly. Similarly, the width of AZ of the proposed metamaterial is much larger than that of the conventional one. Hence, the proposed scheme demonstrates more advantages in the application to vibration isolation when compared with the conventional.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.