Abstract
Aims. We seek indications or evidence of transmission/conversion of magnetoacoustic waves at the magnetic canopy, as a result of its impact on the properties of the wave field of the photosphere and chromosphere. Methods. We use cross-wavelet analysis to measure phase differences between intensity and Doppler signal oscillations in the Halpha, CaII H, and G-band.We use the height of the magnetic canopy to create appropriate masks to separate internetwork (IN) and magnetic canopy regions. We study wave propagation and differences between these two regions. Results. The magnetic canopy affects wave propagation by lowering the phase differences of progressive waves and allowing the propagation of waves with frequencies lower than the acoustic cut-off. We also find indications in the Doppler signals of Halpha of a response to the acoustic waves at the IN, observed in the CaII H line. This response is affected by the presence of the magnetic canopy. Conclusions. Phase difference analysis indicates the existence of a complicated wave field in the quiet Sun, which is composed of a mixture of progressive and standing waves. There are clear imprints of mode conversion and transmission due to the interaction between the p-modes and small-scale magnetic fields of the network and internetwork.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.