Abstract

In this paper we deal with one-dimensional wave propagation in a material that reacts differently to compression and tension. A possible approach to describe such materials is the heteromodular (or bimodular) elastic theory: a piece-wise linear theory with different elastic moduli depending on the stress state. We consider a one-dimensional problem concerning non-stationary wave propagation in a semi-infinite heteromodular elastic body subjected to a suddenly applied harmonic loading. For a medium where the difference of elastic moduli for tension and compression is a small quantity, we obtain an approximate analytical solution of the problem using an asymptotic technique. Then we compare the asymptotic solutions obtained with numerical results and demonstrate a good agreement between them. The spectral characteristics of the constructed solution can be compared with experimental data obtained from dynamical experiments with materials displaying pronounced heteromodular properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.