Abstract
We apply a spectral element method based upon a conforming mesh of quadrangles and triangles to the problem of 2-D elastic wave propagation. The method retains the advantages of classical spectral element methods based upon quadrangles only. It makes use of the classical Gauss–Lobatto–Legendre formulation on the quadrangles, while discretization on the triangles is based upon interpolation at the Fekete points. We obtain a global diagonal mass matrix which allows us to keep the explicit structure of classical spectral element solvers. We demonstrate the accuracy and efficiency of the method by comparing results obtained for pure quadrangle meshes with those obtained using mixed quadrangle-triangle and triangle-only meshes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.