Abstract

An extension of the far-field x-ray diffraction theory is presented by the introduction of a distorted object for calculation of coherent diffraction patterns in the near-field Fresnel regime. It embeds a Fresnel-zone construction on an original object to form a phase-chirped distorted object, which is then Fourier transformed to form a diffraction image. This approach extends the applicability of Fourier-based iterative phasing algorithms into the near-field holographic regime where phase retrieval had been difficult. Simulated numerical examples of this near-field phase retrieval approach indicate its potential applications in high-resolution structural investigations of noncrystalline materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.