Abstract
In this investigation, we utilize two recent analytical schemes to unveil novel solitary wave solutions for the [Formula: see text]-dimensional Mikhailov–Novikov–Wang integrable equation. The said equation serves as a mathematical model that captures specific physical phenomena, albeit lacking a direct physical interpretation. Nevertheless, it finds relevance in various systems within the realm of nonlinear waves in physics. Through the application of the aforementioned analytical schemes, we derive fresh solutions and evaluate their accuracy by employing the variational iteration method. The congruence observed between the analytical and numerical solutions of the investigated model serves as validation for the constructed solutions. Furthermore, we delve into exploring the implications of obtaining precise and ground breaking solitary wave solutions on the practical applications associated with the studied model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.