Abstract

In this investigation, we utilize two recent analytical schemes to unveil novel solitary wave solutions for the [Formula: see text]-dimensional Mikhailov–Novikov–Wang integrable equation. The said equation serves as a mathematical model that captures specific physical phenomena, albeit lacking a direct physical interpretation. Nevertheless, it finds relevance in various systems within the realm of nonlinear waves in physics. Through the application of the aforementioned analytical schemes, we derive fresh solutions and evaluate their accuracy by employing the variational iteration method. The congruence observed between the analytical and numerical solutions of the investigated model serves as validation for the constructed solutions. Furthermore, we delve into exploring the implications of obtaining precise and ground breaking solitary wave solutions on the practical applications associated with the studied model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call