Abstract
A Mindlin continuum model that incorporates both a dependence upon the microstructure and inelastic (nonlinear) behavior is used to study dispersive effects in elasto-plastic microstructured materials. A one-dimensional equation of motion of such material systems is derived based on a combination of the Mindlin microcontinuum model and a hardening model both at the macroscopic and microscopic level. The dispersion relation of propagating waves is established and compared to the classical linear elastic and gradient-dependent solutions. It is shown that the observed wave dispersion is the result of introducing microstructural effects and material inelasticity. The introduction of an internal characteristic length scale regularizes the ill-posedness of the set of partial differential equations governing the wave propagation. The phase speed does not necessarily become imaginary at the onset of plastic softening, as it is the case in classical continuum models and the dispersive character of such models constrains strain softening regions to localize.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.