Abstract

The vast majority of acoustic wave propagation in phononic band studies has been usually carried out by scattering inclusions embedded in a viscoelastic medium, such as air or water. In this study, we present calculated band structure results for the two-dimensional square array geometry of a solid cylindrical scatterer surrounded by a liquid crystal (LC) matrix. Liquid crystals provide a unique combination of liquid-like and crystal-like properties as well as anisotropic properties. The purpose of using LC material is to take advantage of longitudinal acoustic waves propagating parallel (||) and perpendicular (⊥) to the nematic liquid crystal (NLC) director n. The compound used in this study was a room temperature NLC, called 5CB (4-pentyl-4′-cyanobiphenyl). The acoustic band structure of a two-dimensional phononic crystal containing a 5CB NLC and lithium tantalate was investigated by the plane wave expansion method. The theoretical results show that the solid/LC system can be tuned in a favorable configuration for adjusting or shifting acoustic band gaps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call