Abstract

Numerical results on conditions for the emergence of propagation failure of diffusive fronts in two-species competition models for populations with either logistic growth or strong Allee effect are presented. Particularly, the stability against environmental perturbations is investigated. Two different density dependencies of the noise intensities are considered. They mimic a differential functional response of the competitors to the variable environment. Assuming classical linearly density-dependent noise intensities, stochastic wave pinning can occur. This is an ecologically important finding regarding biological invasion as it means that the invasion speed can be reduced by environmental perturbations even yielding a reversal of the invasion wave. However, this depends on the form of the functional per-capita noise response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.