Abstract

Scroll waves are three-dimensional excitation patterns that rotate around one-dimensional space curves. Typically these filaments are closed loops or end at the system boundary. However, in excitable media with anomalous dispersion, filaments can be pinned to the wake of traveling wave pulses. This pinning is studied in experiments with the 1,4-cyclohexanedione Belousov-Zhabotinsky reaction and a three-variable reaction-diffusion model. We show that wave-pinned filaments are related to the coexistence of rotating and translating wave defects in two dimensions. Filament pinning causes a continuous expansion of the total filament length. It can be ended by annihilating the pinning pulse in a frontal wave collision. Following such an annihilation, the filament connects itself to the system boundary. Its postannihilation shape that is initially the exposed rim of the scroll wave unwinds continuously over numerous rotation periods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.