Abstract

Abstract Quantum Fisher information (QFI) plays an important role in quantum metrology, placing the ultimate limit to how precise we can estimate some unknown parameter and thus quantifying how much information we can extract. We observe that both the wave and particle properties within a Mach-Zehnder interferometer can naturally be quantified by QFI. Firstly, the particle property can be quantified by how well one can estimate the a priori probability of the path taken by the particle within the interferometer. Secondly, as the interference pattern is always related to some phase difference, the wave property can be quantified by how well one can estimate the phase parameter of the original state. With QFI as the unified figure of merit for both properties, we propose a more general and stronger wave-particle duality relation than the original one derived by Englert.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call