Abstract

Criegee intermediates, R1R2COO, are reactive species formed in the atmosphere through the ozonolysis of alkenes. They have an intense ultraviolet (UV) adsorption between 300 to 400 nm. However, experimentally determining the absolute cross sections is not easy. We used wave packet propagation on an one-dimensional adiabatic potential energy curve (PEC) along the OO bond to simulate the UV spectra for various Criegee intermediates. Our results showed a very fast, ∼20 fs, decay out of the Franck-Condon region. This gives justification for using the semiclassical approach which was utilized in previous studies. From the comparison of various quantum chemistry methods, we found that multireference methods can give spectra with a width and cross section reproducing the experimental results, while single reference methods tend to give narrower skewed peaks with a larger cross section. From the test using wave packet propagation on various approximated PECs and transition moment functions, we show that the Gaussian approximation within the reflection method is valid. In addition, we found that we can obtain peak positions that reproduce the experimental results by shifting those obtained by MRCI+Q, CASSCF, EOMCCSD, and TDCAMB3LYP by -0.2, -1.0, -0.3, and -0.5 eV, respectively. The Gaussian approximation using peak position, oscillator strength, and peak width from MRCI+Q is a cost-effective way to simulate the UV spectra of Crigee intermediates for which experimental determination may be hard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.