Abstract
Coastal structures such as breakwaters are usually studied under wave loading only. However, at several locations also a current is present. For instance, breakwaters along intake and outfall channels of power plants and desalination plants, or structures in regions with important tidal currents, experience wave loading that can be affected by currents. Nevertheless, wave overtopping and rubble mound stability are usually studied under wave loading only; the effects of waves on wave overtopping and rock slope stability have been summarised in many empirical design formulae. None of the existing empirical relations account for the effects of currents on the wave loading and consequently on wave overtopping and rock slope stability. The effects of wave-current interaction on wave overtopping and rubble mound stability has not been quantified, other than that for mild currents these processes are dominated by waves. Therefore, the present study is focussed on wave loading in combination with a strong current. This study is based on physical model tests in a wave-current basin. The results show to what extent wave overtopping and rubble mound stability are affected by wave loading in combination with a current. Wave overtopping and the damage to rock slopes generally reduce due to the presence of a current compared to the situation without a current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.