Abstract

Let us return from optics to mechanics and explore the analogy to its fullest extent. In optics the old system of mechanics corresponds to intellectually operating with isolated mutually independent light rays. The new undulatory mechanics corresponds to the wave theory of light . Erwin Schrodinger, Nobel lecture , 1933 In this chapter we shall see that electromagnetic waves and electrons feature a number of common properties under conditions of spatial confinement. Simple and familiar problems from introductory quantum mechanics and textbook wave optics are recalled in this chapter to emphasize the basic features of waves in spatially inhomogeneous media. Herewith we make a first step towards understanding the properties of electrons and electromagnetic waves in nanostructures and notice that these properties in many instances are counterparts. Different formulas and statements of this chapter can be found in handbooks on quantum mechanics and wave optics. A few textbooks on quantum mechanics do consider analogies of propagation and reflection phenomena in wave optics with those in wave mechanics. Isomorphism of the Schrodinger and Helmholtz equations In Chapter 2 we discussed that an electron in quantum mechanics is described by the wave function, the square of its absolute value giving the probability of finding an electron at a specific point in space. This function satisfies the Schrodinger equation (2.56) which is the second-order differential equation with respect to space and the first-order differential equation with respect to time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.