Abstract

This paper utilizes a combination of theory and simulations to examine synthetic aperture imaging across a wide range of turbulence conditions. Extensive wave optics simulations are used to validate existing theory and to investigate the use of a common measurement technique. It demonstrates the applicability of earlier synthetic aperture laser radar (ladar) (SAL) research across a wide range of turbulence conditions, and examines the metric approaches and limitations for the imaging conditions normally seen in practical SAL systems. To examine the full impact of turbulence on SAL, the derivations, simulations, and analyses include three different resolution metrics as well as a commonly used contrast metric: the integrated sidelobe ratio. This paper demonstrates the integrated effects of turbulence on SAL imaging. Finally, suggestions are given for measuring the true resolving power of operational SAL systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.