Abstract

A two-dimensional analytical solution is presented to study the reflection and transmission of linear water waves propagating past a submerged horizontal plate and through a vertical porous wall. The velocity potential in each fluid domain is formulated using three sets of orthogonal eigenfunctions and the unknown coefficients are determined from the matching conditions. Wave elevations and hydrodynamic forces acting on the porous wall are computed. Reflection and transmission coefficients are presented to examine the performance of the breakwater system. The present analytical solutions are found in fairly good agreement with the available laboratory data. The results indicate that the plate length, the porous-effect, the gap between plate and porous wall, and the submerged depth of the plate all show a significant influence on the reflected and transmitted wave fields. It is also interesting to note that the submerged plate plays an important role in reducing the transmitted wave height, especially for long incident waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.