Abstract

Modulational instability is exclusively addressed in a minimal model for calcium oscillations in cells. The cells are considered to be coupled through paracrine signaling. The endoplasmic recticulum and cytosolic equations are reduced to a single differential-difference amplitude equation. The linear stability analysis of a plane wave is performed on the latter and the paracrine coupling parameter is shown to deeply influence the instability features. Our analytical expectations are confirmed by numerical simulations, as instability regions give rise to unstable wave patterns. We also discuss the possibility of perfect intercellular communication via the activation of modulational instability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call