Abstract

The wave loads on a navigation lock gate provided with an opening in the ballast tank are analyzed using a mathematical model based on the linear wave theory. The analysis focuses on the influence of the wave number and the geometrical characteristics of the structure on the applied load. It is shown that the maximum value of the vertical force mainly depends on the height of the ballast tank and on the width of the opening. The wave number for which the maximum load occurs significantly depends on the geometric characteristics of the structure except for the water depth above the ballast tank which has a negligible effect. An increase in the height of the ballast tank causes an increase in the wave load while an increase in the width of the opening causes a decrease in the wave load. Based on the results of the mathematical model an easy to use regression model has been developed which can be employed to evaluate the wave load.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.