Abstract

In this paper, the oscillatory and steady streaming velocities over a permeable bed are studied both theoretically and experimentally. Three different sizes of glass beads are used to construct permeable beds in laboratory experiments: the diameters of the glass beads are 0.5 mm, 1.5 mm, and 3.0 mm, respectively. Several experiments are performed using different wave parameters. A one-component laser-doppler velocimeter (LDV) is used to measure the horizontal velocity component inside the Stokes boundary layer above the solid and permeable surfaces. It is observed that neither oscillatory nor steady velocity components vanish on the permeable surface. The ‘slip velocities’ increase with increasing permeability. Based on the laminar flow assumption and the order of magnitude of the parameters used in the experiments, a perturbation theory is developed for the oscillatory velocity and the steady wave-induced streaming in the boundary layers above and inside the permeable bed. The theory confirms many experimental observations. The theory also provides the damping rate and the phase changes caused by the permeable bed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.