Abstract
The study of wave impact physics and magnitudes are key for the design of vertical coastal hydraulic structures. This research addresses the study of standing wave impacts on vertical coastal hydraulic structures with a relatively short horizontal overhang, which is especially relevant for structures such as lock gates, sluice gates, dewatering sluices, flood gates and storm surge barriers. This paper applies the pressure-impulse theory to predict the pressure-impulse caused by standing wave impacts. These theoretical estimates are compared with results from four extensive regular wave tests from laboratory experiments conducted at the Hydraulic Engineering Laboratory of the Delft University of Technology. The agreement for two test cases is good, while differences are observed in the other two cases. This study concludes that a prediction method based on the pressure-impulse theory will allow to carry out preliminary load estimations from standing wave impacts on vertical structures with overhangs. Nevertheless, further research is required considering a larger range of structure dimensions, incident wave characteristics and influencing processes such as air entrapment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.