Abstract
The statistical distribution of zero-crossing wave heights in Gaussian mixed sea states is examined by analyzing numerically simulated data. Nine different kinds of bimodal scalar spectra are used to study the effects of the relative energy ratio and the peak frequency separation between the low and high frequency wave fields on the wave height distribution. Observed results are compared with predictions of probabilistic models adopted in practice. Comparisons of the empirical data with relevant probabilistic models reveals that the Rayleigh model systematically overestimates the number of observed wave heights larger than the mean wave height, except for one of the cases analyzed. None of the models used to predict the observed exceedance probabilities is able to characterize adequately all cases of bimodal sea states examined here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Offshore Mechanics and Arctic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.