Abstract

We have developed a measurement method to monitor P- and S-waves generated from laboratory-scale explosions in meter-sized rock samples at a series of stations, as well as invented a device to drill spherical cavities in rock, with diameters up to 10 centimeters. We applied these to experiments in Bedford limestone in which spherical/cylindrical explosives (0.2 to 1.9 g) were centrally placed in 1.2- to 3-cm diameter cavities. Stress waves generated by the explosions were recorded within a radius of 25 cm. The radial stress wave records and post-explosion studies demonstrate that S-waves are generated from explosions in cavities as a result of both wave mode-conversion from the cavity wall and crack propagation in rocks. The experimental results of wave generation from the explosions in spherical and cylindrical cavities demonstrate the cavity geometrical effect on the resulting wave pattern. The P- and S-waves generated by explosions and crack propagation in rocks are analyzed. A simple analytic model for P-wave generation is proposed to explain the differences of P-wave-induced displacement histories between the observed waveforms and those predicted by a step-pressure source. Generally, the qualitative predictions of this model fit the observations. The present results demonstrate the importance of rock cracking and cavities in P- and S-wave generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.