Abstract
We give an integral representation of the wave functions of the quantum N-particle Toda chain with boundary interaction. In the case of the Toda chain with a one-boundary interaction, we obtain the wave function by an integral transformation from the wave functions of the open Toda chain. The kernel of this transformation is given explicitly in terms of Γ-functions. The wave function of the Toda chain with a two-boundary interaction is obtained from the previous wave functions by an integral transformation. In this case, the difference equation for the kernel of the integral transformation admits a separation of variables. The separated difference equations coincide with the Baxter equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.