Abstract

We present a new method for computing the wave function in the presence of constraints. As an explicit example we compute the wave function for the many electrons problem in coupled metallic rings in the presence of external magnetic fluxes. For equal fluxes and an even number of electrons the constraints enforce a wave function with a vanishing total momentum and a large persistent current and magnetization in contrast to the odd number of electrons where at finite temperatures the current is suppressed. We propose that the even-odd property can be verified by measuring the magnetization as a function of a varying gate voltage coupled to the rings. By reversing the flux in one of the ring the current and magnetization vanish in both rings; this can be used as a non-local control device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call