Abstract

Abstract A numerical boundary integral equation method combined with a non-linear time stepping procedure is used for the calculation of wave forces on a large, submerged, horizontal circular cylinder. As the method is based on potential theory, all computations are performed in the inertia dominated domain, that is, for small Keulegan-Carpenter numbers. Computations are carried out for the Eulerian mean current under wave trough level equal to zero. When the cylinder is moved towards the sea bed the computations show that the inertia coefficients increase significantly, which is associated with a blockage effect. Furthermore, the effect of the wave steepness is reduced when the submergence of the cylinder is increased. In the vicinity of the free water surface the vertical inertia coefficient is highly dependent upon the wave steepness, which tends to reduce it, whereas the horizontal inertia coefficient is only slightly dependent on the wave steepness. Computations are also carried out for cylinder diameters comparable with the wave length. Finally, inertia coefficients computed by the present method are compared with some analytical results by Ogilvie [(1963), First and second order forces on a cylinder submerged under a free surface. J. Fluid Mech. 16, 451–472]. As long as the assumptions leading to Ogilvie's theory are fulfilled (cylinder radius small compared to the wave length), the results are quite similar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call