Abstract

We derive an analytical model for the wave‐forced movement of single‐stem vegetation and test the model against observed vegetation motion in a natural salt marsh. Solutions for constant diameter and tapered stems are expanded using normal mode solutions to the Euler‐Bernoulli problem for a cantilevered beam. These solutions are compared with motion of water and of the sedge Schoenoplectus americanus observed (using synchronized current meters and video) in a shallow salt marsh (depth < 1 m). Consistent with theory, sedge motion led water motion, with the phase decreasing (from 90 to 0 degrees) with increasing wave frequency. After tuning of a single free parameter (Young's modulus), the theory successfully predicted the transfer function between measured water and stem motion. Formulae predicting frequency‐dependent wave dissipation by flexible vegetation are derived. For the moderately flexible stems observed, the model predicted total dissipation was about 30% of the dissipation for equivalent rigid stems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.