Abstract

Abstract We analyzed properties of waves excited by mildly relativistic electron beams propagating along the magnetic field with a ring-shape perpendicular momentum distribution in neutral and current-free solar coronal plasmas. These plasmas are subject to both the beam and the electron cyclotron maser instabilities driven by the positive momentum gradients of the ring-beam electron distribution in the directions parallel and perpendicular to the ambient magnetic field, respectively. To explore the related kinetic processes self-consistently, 2.5D fully kinetic particle-in-cell simulations were carried out. To quantify excited wave properties in different coronal conditions, we investigated the dependences of their energy and polarization on the ring-beam electron density and magnetic field. In general, electrostatic waves dominate the energetics of waves, and nonlinear waves are ubiquitous. In weakly magnetized plasmas, where the electron cyclotron frequency ω ce is lower than the electron plasma frequency ω pe, it is difficult to produce escaping electromagnetic waves with frequency ω > ω pe and small refractive index (k and c are the wavenumber and the light speed, respectively). Highly polarized and anisotropic escaping electromagnetic waves can, however, be effectively excited in strongly magnetized plasmas with ω ce/ω pe ≥ 1. The anisotropies of the energy, circular polarization degree (CPD), and spectrogram of these escaping electromagnetic waves strongly depend on the number density ratio of the ring-beam electrons to the background electrons. In particular, their CPDs can vary from left-handed to right-handed with the decrease of the ring-beam density, which may explain some observed properties of solar radio bursts (e.g., radio spikes) from the solar corona.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.