Abstract

The distribution and abundance of small cryptic reef fishes were quantified among microhabitats and reef zones at both exposed and sheltered sites at Lizard Island, Great Barrier Reef. A total of 1042 individuals from 44 species in 8 families were sampled. Marked variation in abun- dance, species numbers, size-class distribution and species composition were displayed among reef zones at exposed sites; in contrast, comparatively little variation was found in sheltered sites. The exposed, wave-swept front flat reef zone was clearly the most depauperate and species-poor zone with calmer back reef, lagoonal and reef base zones containing the highest numbers of individuals and species. Larger, heavier individuals predominated in exposed wave-swept reef zones whereas smaller, lighter individuals were commonly found in calmer waters. Sheltered sites exhibited little variation among zones. In these sites, microhabitat appeared to play a much greater role in shaping community composition. Overall, 68.5% of all individuals (70.1% at exposed and 65.4% at sheltered sites) were collected from sand/rubble microhabitats as opposed to 31.5% from open reef microhab- itats. Assemblages at exposed and sheltered sites exhibited little taxonomic overlap, even of highly abundant species. These results indicate that wave energy plays a significant role in structuring small cryptic coral reef fish communities, with microhabitat type playing a key role in the absence of wave energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call